

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0656 of 10 October 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Sikla screwbolt TSM

Fasteners for use in concrete for redundant non-structural systems

Sikla Holding Ges.m.b.H. Kornstraße 14 4614 MARCHTRENK ÖSTERREICH

Sikla Herstellwerk 2

16 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601

ETA-16/0656 issued on 30 September 2016

European Technical Assessment ETA-16/0656 English translation prepared by DIBt

Page 2 of 16 | 10 October 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0656 English translation prepared by DIBt

Page 3 of 16 | 10 October 2019

Specific Part

1 Technical description of the product

The Screwbolt TSM in sizes of 5 and 6 mm is an anchor made of zinc-plated steel respectively steel with zinc flake coating and stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C 3

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and guasi-static loading)	See Annex C 1
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1
Characteristic resistance for all load directions and modes of failure for simplified design	See Annex C 2
Durability	See Annex B 1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

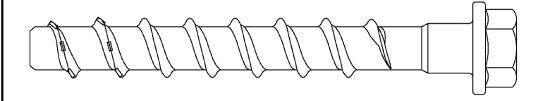
European Technical Assessment ETA-16/0656

Page 4 of 16 | 10 October 2019

English translation prepared by DIBt

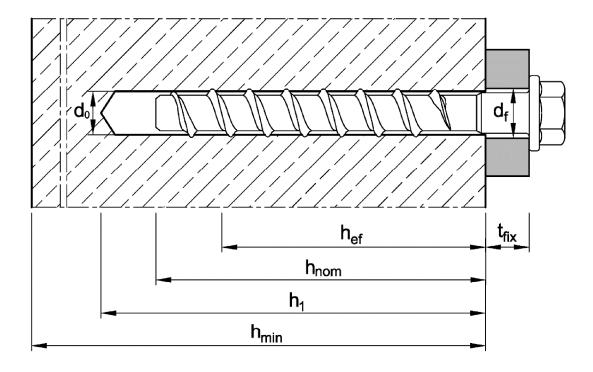
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 10 October 2019 by Deutsches Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider



Concrete Screw TSM

TSM zinc plated TSM A4 TSM HCR

Installation situation in concrete

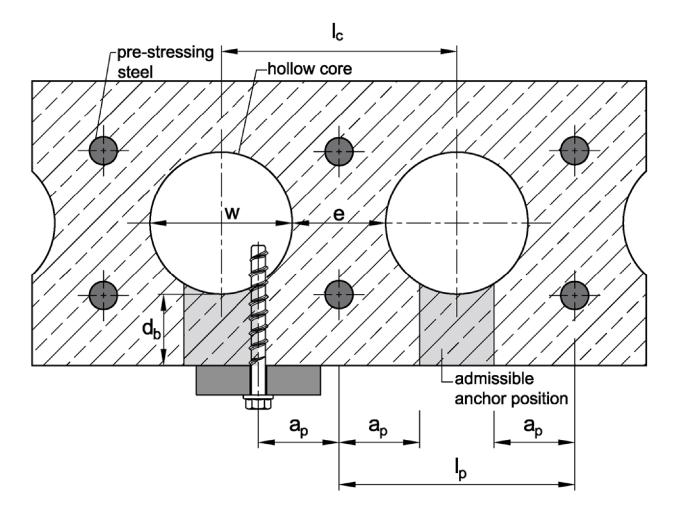
 d_0 = nominal drill bit diameter h_{ef} = effective anchorage depth h_{nom} = nominal anchorage depth h_1 = depth of the drill hole

 h_{min} = minimum thickness of member

 t_{fix} = thickness of fixture

d_f = diameter of clearance hole in the fixture

Screwbolt TSM


Product description

Product and installation situation in concrete

Annex A1

Installation situation in precast hollow core slabs

$w/e \le 4,2$

w = core width

e = web thickness

d_b = Flange thickness

 I_c = Core distance $I_c \ge 100 \text{ mm}$

 $I_p = Pre$ -stressing steel distance $I_p \ge 100 \text{ mm}$

 a_p = Distance between anchor position and $a_p \ge 50 \text{ mm}$

pre-stressing steel

Screwbolt TSM	
Product description Installation situation	Annex A2

Table A1: Anchor types and description

	Anchor type		TSM -	Description
1		0	ВІ	Anchor version with metric connection thread and hexagon socked
2		0	В	Anchor version with metric connection thread and hexagon drive
3			SUTX	Anchor version with hexagon head, pressed-on washer and TORX drive
4		(B) (B)	SU	Anchor version with hexagon head and pressed-on washer
5		\$52 \$ 9	S	Anchor version with hexagon head
6		(3/2) o	SK	Anchor version with countersunk head and TORX drive
7		(852) (852)	LPS	Anchor version with pan head and TORX drive
8		\$ \$ \$ \$ \$	LP	Anchor version with large pan head and TORX drive
9			BSK	Anchor version with countersunk head and metric connection thread
10			ST	Anchor version with hexagon drive and metric connection thread
11			IM	Anchor version with internal thread and hexagon drive

Screwbolt TSM	
Product description Anchor types and description	Annex A3

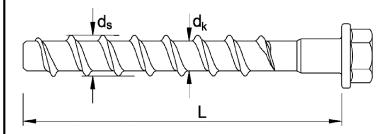


Table A2: Dimensions

Anc	hor size			TSM 5	TSM 6
Leng	gth of the anchor	L≤	[mm]	20	00
hread	Core diameter	d _k	[mm]	4,0	5,1
Thr	Outside iameter	d _s	[mm]	6,5	7,5

Marking e.g.: ♦ BSZ 6 100

or TSM 6 100

BSZ ODZ 9 SBSZ Trade name or (optional with

TSM manufacturer identification ♦)

6 Anchor size

100 Length of anchor

A4 additional marking of stainless steel

HCR additional marking of high corrosion resistant

steel

K

"k" *or* "x"

for anchors with connection thread and $h_{nom} = 35 \text{ mm}$

Table A3: Materials

Version	Steel, zinc plated TSM Stainless steel TSM A4 High corrosion resistant steel TSM HCR						
Material	Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 or zinc flake coating acc. to EN ISO 10683:2018 (≥ 5µm)	1.4529					
Nominal characteristic steel yield strength f _{yk}	560 N/mm²						
Nominal characteristic steel ultimate strength f _{uk}	700 N/mm²						
Elongation at fracture A _s	≤ 8%						

Screwbolt TSM	
Product description Dimensions, marking and materials	Annex A4

Specifications of Intended use

Concrete screv	v TSM	TSM 5	TSM 6		
	Redundant non-structural systems according to EN 1992-4:2018	✓	✓		
Anchorages subject to	Static or quasi-static loads	✓	✓		
	Fire exposure in solid concrete				
	Cracked or uncracked concrete		✓		
Base material	Compacted, reinforced or unreinforced concrete (without fibres) according to EN 206:2013	✓	✓		
Dasc material	Strength classes according to EN 206:2013: C20/25 to C50/60	✓	✓		
	Precast pre-stressed hollow core slabs: C30/37 to C50/60	-	√		

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure including industrial and marine environment or exposure to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternation immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used).

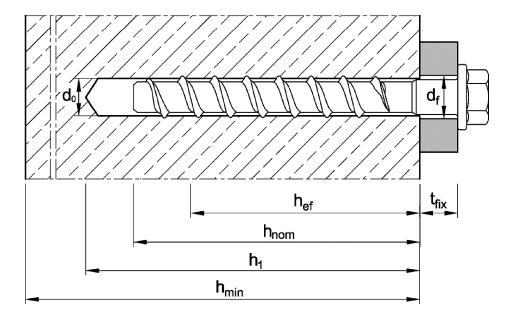
Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Design method for anchorages acc. to EN 1992-4:2018 and EOTA Technical Report TR 055:
 - Anchorages in solid concrete: design method A
 - Anchorages in precast pre-stressed hollow core slabs: design method C
 - The design method for shear load also applies for the specified diameter d_f of the clearance hole in the fixture in Annex B2, Table B1.

Installation:

- Making of drill hole by hammer drilling or vacuum drill bit.
- Anchor installation carried out by appropriately qualified personal and under the responsibility of the person responsible for technical matters on site
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

Screwbolt TSM	
Intended use Specifications	Annex B1

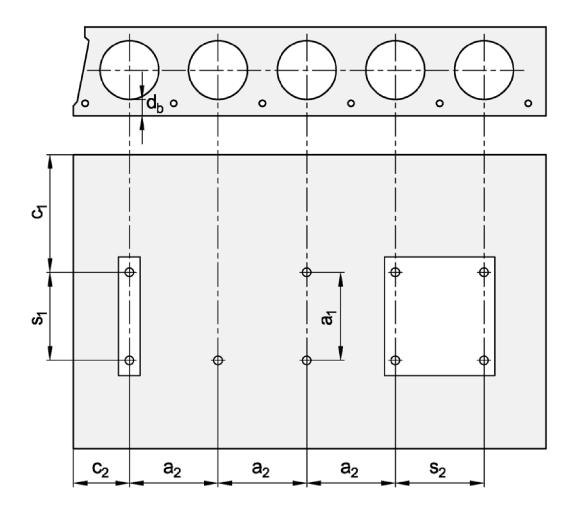

Table B1: Installation parameters

Anchor size			TSM 5	TSN	1 6
Nominal embedment depth	h_{nom}	[mm]	35	35 55	
Nominal drill bit diameter	d_0	[mm]	5	6	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,4	6,4	
Effective anchorage depth	h _{ef}	[mm]	27	27 44	
Depth of drill hole	h₁ ≥	[mm]	40	40 60	
Diameter of clearance hole in the fixture	d _f ≤	[mm]	7	8	
Max. Installation torque for screws with metric connection thread	T _{inst} ≤	[Nm]	8	10	
Tangential impact screw driver 1)	T _{imp,max}	[Nm]	110	160	

¹⁾ Installation with tangential impact screw driver, with maximum power output T_{imp,max} acc. to manufacturers instructions is possible

Table B2: Minimum thickness of member, minimum edge distance and minimum spacing for anchorages in solid concrete

Anchor size		TSM 5	TS	М 6	
Nominal embedment depth	h_{nom}	[mm]	35	35	55
Minimum thickness of member	h_{min}	[mm]	80	80	100
Minimum edge distance	C _{min}	[mm]	35	35	40
Minimum spacing	S _{min}	[mm]	35	35	40



Screwbolt TSM	
Intended use Installation parameters	Annex B2
Minimum thickness of concrete member, minimum spacing and edge distance (s concrete)	solid

Table B3: Minimum edge distances and minimum spacing for anchorages in precast pre-stressed hollow core slabs

Anchor size			TSM 6		
Flange thickness	d _b	[mm]	≥ 25	≥ 30	≥ 35
Minimum edge distance	C _{min}	[mm]	≥ 100 mm		
Minimum spacing	S _{min}	[mm]	≥ 100 mm		
Minimum distance between anchor groups	a_{min}	[mm]		≥ 100 mm	

c₁, c₂ Edge distance

 s_1, s_2 Spacing

a₁, a₂ Distance between anchor groups

Screwbolt TSM	
Intended use Installation parameters (precast pre-stressed hollow core slabs)	Annex B3

Installation instructions for anchorages in solid concrete slabs Drill hole perpendicular to concrete surface. Using a suction drill, continue with step 3. 2 Blow out dust or alternatively vacuum clean down to the bottom of the hole. Screw in concrete screw, e.g. with tangential impact screw driver or torque 3 wrench. After installation, the head of the anchor is supported on the fixture must be 4 undamaged. **Screwbolt TSM Annex B4** Intended use Installation instructions (solid concrete)

Installation instructions for	or anchorages in precast pre-stressed hollow core s	labs
1	Search for position of pre-stressing steel.	
2	Mark position and search for the next position of pre-stresse	ed steel.
3	Mark second position of pre-stressed steel.	
4 ≥25mm ≥50mm ≥50mm	Drill hole taking into account the installation parameters and Using a suction drill, continue with step 6.	l distances.
5	Blow out dust or alternatively vacuum drill hole.	
6	Screw in concrete screw, e.g. with tangential impact screw wrench.	driver or torque
7	After installation, the head of the anchor is supported on the be undamaged.	e fixture and must
Screwbolt TSM		
Intended use Installation instructions (precast p	re-stressed hollow core slabs)	Annex B5

Table C1:	Characteristic va	lues for	anchorages	in solid	concrete
-----------	-------------------	----------	------------	----------	----------

Anchor size			TSM 5	TSM 6		
Nominal embedment depth h _{nom} [mm]		35	35	55		
Tension load					-	
Installation factor		γinst	[-]	1,2		1,0
Steel failure						
Characteristic resistance		$N_{Rk,s}$	[kN]	8,7	1	4,0
Partial factor		γ _{Ms,N}	[-]	1,5		1,5
Pull-out					_	_
Characteristic resistance in and uncracked concrete C		$N_{Rk,p}$	[kN]	1,5	3,0	7,5
Increasing factor for $N_{\text{Rk},p}$		Ψ _C	[-]		$\left(\frac{f_{ck}}{20}\right)^{0.5}$	
Concrete cone failure						
Effective anchorage depth		h _{ef}	[mm]	27	27	44
Spacing		S _{cr,N}	[mm]		3 h _{ef}	
Edge distance		C _{cr,N}	[mm]		1,5 h _{ef}	
$Factor \ k_1 \ for \ concrete \\ \hline \begin{array}{c} cracked \\ \hline uncracked \\ \hline k_{ucr,N} \end{array}$		$k_{\text{cr,N}}$	[-]	7,7		
		k _{ucr,N}	[-]	11,0		
Splitting					_	_
Spacing		S _{cr,sp}	[mm]	120	120	160
Edge distance		C _{cr,sp}	[mm]	60	60	80
Shear load						
Installation factor		γ _{inst}	[-]	1,0	-	1,0
Steel failure without leve	r arm					
Characteristic resistance		$V^0_{\rm Rk,s}$	[kN]	4,4	7	,0
Partial factor		γ̃Ms,V	[-]	1,25	1,	25
Ductility factor		k ₇	[-]	0,8	0,8	
Steel failure with lever ar	 m					
Characteristic bending resistance		M ⁰ _{Rk.s}	[Nm]	5,3 10,9),9
Concrete pry-out failure						
Pry-out factor		k ₈	[-]	1,0		1,0
Concrete edge failure						
Effective length of anchor		$I_f = h_{ef}$	[mm]	27	27	44
Outside diameter of ancho	r	d_{nom}	[mm]	5		

Screwbolt TSM	
Performance Characteristic values for tension and shear loads (solid concrete)	Annex C1

Table C2: Characteristic values of resistance in **precast pre-stressed hollow core slabs** C30/37 to C50/60

Anchor size			TSM 6			
Flange thickness d _b [mm]			≥ 25	≥ 30	≥ 35	
Characteristic resistance for all directions	F_Rk	[kN]	1	2	3	
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	10,9			
Edge distance	$C_{cr} = C_{min}$	[mm]	100			
Spacing	$s_{cr} = s_{min}$	[mm]	100			
Partial factor	γм	[-]	1,5			
Installation factor	γ_{inst}	[-]	1,0			

Screwbolt TSM	
Performance Characteristic values of resistance in precast pre-stressed hollow core slabs	Annex C2

Table C3: Characteristic values of resistance under **fire exposure** for anchorages in solid concrete

Anchor size			TSM 6				
Material				Steel, zinc plated Stainless steel A4 /			eel A4 / HCR
Nominal embedment depth	1	h _{nom}	[mm]	35 55 35			55
Steel failure (tension and	shear res	istance)					
	R30			0	,9	1	,2
Characteristic resistance	R60	$N_{Rk,s,fi}$	[kN]	0,8		1	,2
Characteristic resistance	R90	$V_{Rk,s,fi}$		0,6		1,2	
	R120			0,4		0,8	
Steel failure with lever ar	m						
	R30			0,7		0,9	
Characteristic bending	R60	$M^0_{Rk,s,fi}$	[Nm]	0	,6	0	,9
resistance	R90	IVI Rk,s,fi	ן ניאווון	0	,5	0	,9
	R120			0	,3	0	,6
Spacing		$S_{\rm cr,fi}$	[mm]	4 h _{ef}			
Edge distance		$C_{cr,fi}$	[mm]	2 h _{ef}			

The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given values

The characteristic resistance for pull-out, concrete cone failure, concrete pry-out and concrete edge failure shall be calculated according to EN 1992-4:2018.

Screwbolt TSM	
Performance Characteristic values of resistance under fire exposure (solid concrete)	Annex C3