

DECLARATION OF PERFORMANCE

DoP Nr.: Sikla-2.1-101_en

Unique identification code of product-type:

Intended use/es:

Manufacturer:

Sikla Injection System VMZ

Torque controlled bonded anchor with anchor rod VMZ-A and internal threaded rod VMZ-IG for use in concrete, see Annex

Sikla Holding GmbH Kornstraße 4 4614 Marchtrenk - Österreich

System/s of AVCP:

1

European Assessment Document:

European Technical Assessment: Technical Assessment Body: Notified body/ies: EAD 330499-01-0601 ETA-10/0260, 26.11.2021 DIBt, Berlin NB 2873 – Technische Universität Darmstadt

Declared performance/s:

Essential characteristics	Performance
Mechanical resistance and stability (BWR 1)	
Characteristic resistance to tension load (static and quasi-static loading)	Annex B5, B6, C1-C3, C10
Characteristic resistance to shear load (static and quasi-static loading)	Annex C4, C5, C11
Displacements under short-term and long-term loading	Annex C8, C9, C11
Characteristic resistance and displacements for seismic performance category C1 + C2	Annex C6, C7, C8, C9
Hygiene, health and the environment (BWR 3)	
Content, emission and/or release of dangerous substances	NPD

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Günter Brugger (Head of IPRM) Villingen-Schwenningen 27.09.2022

M. M-C

Achim Münch (Head of Management Systems)

The original of this declaration of performance was written in German. In the event of deviations in the translation, the German version shall be valid

Specifications of inten	ded use												
Injection System VMZ with a	Inchor rod	VMZ-A	M8	M10	M12	M16	M20	M24					
Static and quasi-static action					```	/							
Seismic action (Category C1	+ C2)		-	✓	✓	✓	✓	✓					
Cracked or uncracked concre	te				\$	1							
Strength classes acc. to EN 2			C20/25 to C50/60										
Reinforced or unreinforced no to EN 206:2013+A1:2016	ormal weight con	crete acc.			,	/							
Temperature Range I	-40 °	°C to +80 °C	m	ax. long t	term temp erm temp	erature +	50 °C						
Temperature Range II		C to +120 °C			term temp erm temp	erature +							
	101 10201100	nmer drill bit				/							
Making of drill hole		uum drill bit ¹⁾	-	~	✓	~	✓	~					
-	(seismic acti	nond drill bit on excluded)	-	~	~	~	~	~					
Installation allowable in		dry concrete				/ /							
Installation allowable in		vet concrete er-filled hole	_	-	√ 2)	/ / /	 ✓ 	1					
Overhead installation	Wal	er-illied fible	-	-		/	·	•					
Pre-setting installation						/							
Trough-setting installation			-	✓	, ✓	, ✓	✓	✓					
¹⁾ e.g. MKT vacuum drill bit, Würth ²⁾ Exception: VMZ-A 75 M12 (Insta													
Injection System VMZ with a	inchor rod	VMZ-IG	M6	M8	M10	M12	M16	M20					
Static and quasi-static action					,	/							
Seismic action (Category C1	,		-										
Cracked and uncracked conc		10	✓ C20/25 to C50/60										
Strength classes acc. to EN 2 Reinforced or unreinforced no acc. to EN 206:2013+A1:2016	ormal weight con					0 C50/60 /							
Temperature Range I		°C to +80 °C			term temp erm temp								
Temperature Range II	-40 °C	C to +120 °C	m	ax. short	term temp erm temp	oerature -	+120 °C						
_		nmer drill bit			,	(
Making of drill hole		uum drill bit ¹⁾	-	~	~	~	~	~					
		mond drill bit	-	✓	✓	~	✓	✓					
Installation –		dry concrete				(
allowable in —		vet concrete		1		/							
	wat	er-filled hole	-	-	✓	✓	✓	~					
Overhead installation						/							
Pre-setting installation	10 M. 17400 B. 1	a. 100 - 140 - 14	8 20 ***		,	/							
¹⁾ e.g. MKT vacuum drill bit, Würth	hammer drill bit w	vith suction or H	leller Dust	ter Expert									
SIKLA Injection System \	/MZ												
Intended use Specifications and installation						Annex	B1						

Specifications of intended use

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions: all versions VMZ-A and VMZ-IG
- For all other conditions: Intended use of materials according to Annex A3, Table A1 and Annex A5, Table A4 corresponding to the corrosion resistance class CRC to EN 1993-1-4:2015

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018.

Installation:

- Drill hole must be cleaned directly prior to installation of the anchor or the drill hole has to be protected against re-contamination in an appropriate way until dispensing the mortar in the drill hole.
- Water filled drill holes must not be polluted otherwise the cleaning of the drill hole must be repeated.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -15 °C.
- It must be ensured that icing does not occur in the drill hole.
- Optionally, the annular gap between anchor rod and fixture may be filled with injection adhesive VMZ using the washer with bore (Part 2b, Annex A3) instead of the washer (Part 2a, Annex A3).

SIKLA Injection System VMZ

Intended use Specifications

Table B1: Working and curing time VMZ

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾
- 15 °C to - 10 °C	45 min	7 d
- 9 °C to - 5 °C	45 min	10:30 h
- 4 °C to - 1 °C	45 min	6:00 h
0 °C to +4 °C	20 min	3:00 h
+5 °C to +9 °C	12 min	2:00 h
+10 °C to +19 °C	6 min	1:20 h
+20 °C to +29 °C	4 min	45 min
+30 °C to +34 °C	2 min	25 min
+35 °C to +39 °C	1,4 min	20 min
+ 40 °C	1,4 min	15 min
Cartridge temperature	≥ 5°	с

¹⁾ Curing time in wet concrete shall be doubled.

Table B2: Working and curing time VMZ express

Temperature in the drill hole	Maximum working time	Minimum curing time dry concrete ¹⁾
- 5 °C to - 1 °C	20 min	4:00 h
0 °C to +4 °C	10 min	2:00 h
+ 5 °C to + 9 °C	6 min	1:00 h
+10 °C to +19 °C	3 min	40 min
+20 °C to +29 °C	1 min	20 min
+ 30 °C	1 min	10 min
Cartridge temperature	≥ 5°	С

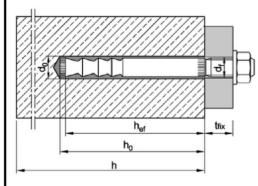
¹⁾ Curing time in wet concrete shall be doubled.

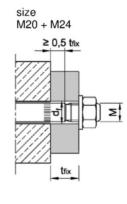
SIKLA Injection System VMZ

Intended use Working and curing time

Table B3: Installation parameters, VMZ-A M8 – M12

	-												
Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	125
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	75	85	100	105	115	130
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Installation torque	T _{inst} ≤	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Diameter of clearance hole	in the f	ixture											
Pre-setting installation	$d_{\rm f} \leq$	[mm]	9	9	12	12	14	14	14	14	14	14	14
Through-setting installation	$d_{\rm f} \leq$	[mm]	-	-	14	14	14 ¹⁾ / 16	16	16	16	16	16	16
1) and Appen P11													


¹⁾ see Annex B11

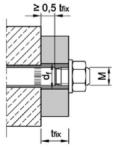

Table B4: Installation parameters, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	160	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	$h_0 \geq$	[mm]	98	113	133	153	168	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque	T _{inst} ≤	[Nm]	50	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole i	in the i	fixture											
Pre-setting installation	$d_{\rm f} \leq$	[mm]	18	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation	$d_{\rm f} \leq$	[mm]	20	20	20	20	20	24	26	26	28	28	28

Pre-setting installation

size M8 to M16, M20 LG, M24 LG

Through-setting installation


size M10 to M16, M20 LG, M24 LG

5

tfix

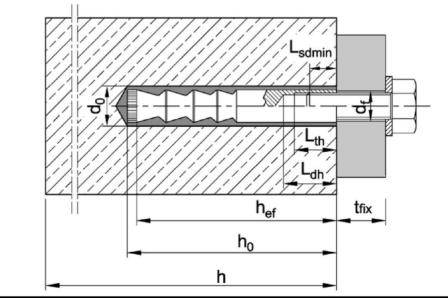
The annular gap in the clearance hole in the fixture has to be filled completely by excess mortar!

SIKLA Injection System VMZ

Intended use

Installation parameters VMZ-A

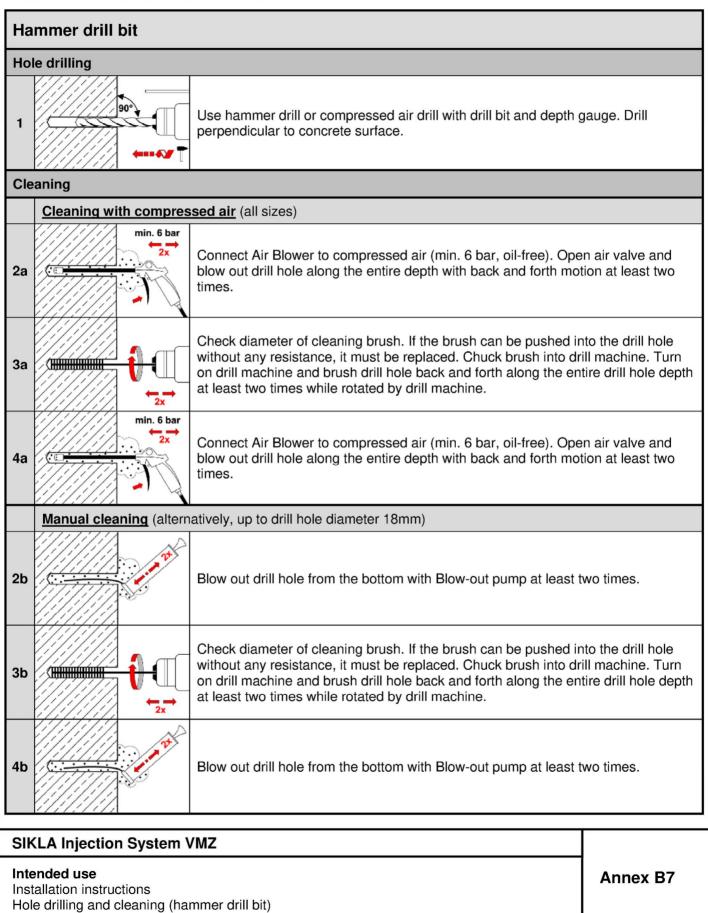
Table B5: Minimum spacing and edge distance, VMZ-A M8 – M12													
Anchor size	VMZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Cracked concrete													
Minimum spacing	Smin	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	55	50	50	50	50	50
Uncracked concrete													
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
Minimum edge distance	Cmin	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾


Table B6: Minimum spacing and edge distance, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ¹⁾	190 180 ¹⁾	205 200 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Cracked concrete													
Minimum spacing	Smin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Minimum edge distance	Cmin	[mm]	50	50	60	60	60	80	80	80	80	80	80
Uncracked concrete													
Minimum spacing	Smin	[mm]	50	60	60	60	60	80	80	80	80	105	105
Minimum edge distance	Cmin	[mm]	50	60	60	60	60	80	80	80	80	105	105

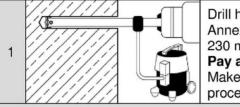
¹⁾ The reverse of the concrete member must not be damaged after drilling and must be filled with high-strength mortar if drilled through.

²⁾ For an edge distance $c \ge 80$ mm a minimum spacing $s_{min} = 55$ mm is applicable.


Anchor size	V	/IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d_0	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	$d_{\rm f} \leq$	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L_{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L _{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ¹⁾	160	230 220 ¹⁾	230 220 ¹
Cracked concrete														
Minimum spacing	Smin	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Uncracked concrete														
Minimum spacing	Smin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
⁾ The reverse of the concre through.	ete memt	per must	not be	damag	ed afte	r drillin	g and r	nust be	filled v	vith hig	h-stren	gth mo	rtar if d	rilled

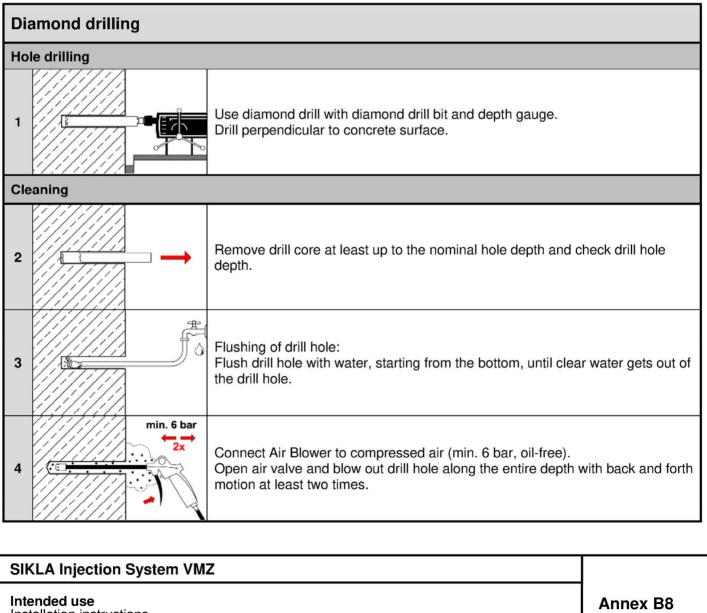
SIKLA Injection System VMZ

Intended use Installation parameters VMZ-IG


Installation instructions - Hammer drill bit

Installation instructions - Vacuum drill bit

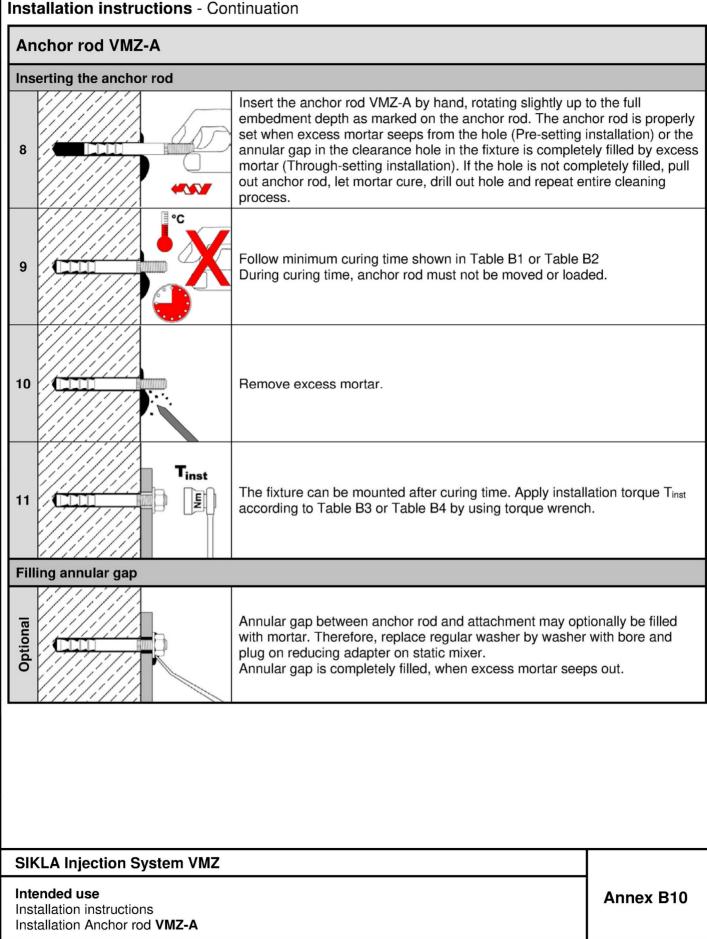
Vacuum drill bit


Hole drilling and cleaning

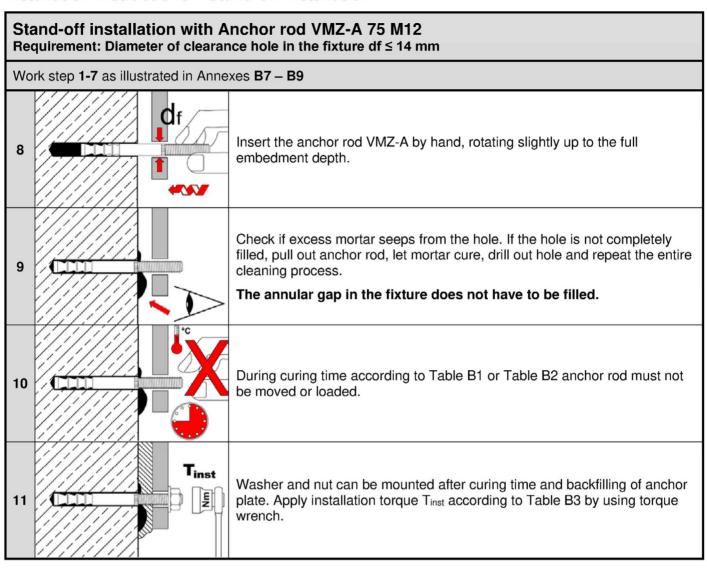
Drill hole perpendicular to concrete surface by using a vacuum drill bit (see Annex B1). The nominal underpressure of the vacuum cleaner must be at least 230 mbar / 23kPa. **Pay attention to the function of the dust extraction system!** Make sure the dust extraction is working properly throughout the whole drilling process.

Additional cleaning is not necessary - continue with step 5!

Installation instructions - Diamond drilling


Installation instructions Hole drilling and cleaning (vacuum drill bit and diamond drill bit)

Installation instructions - Continuation Injection Check expiration date on cartridge. Never use when expired. Remove cap from cartridge. Attach the supplied static mixer to the cartridge. For every 5 working interruption longer than the recommended working time (Table B1 or Table B2) as well as for a new cartridge always use a new static mixer. Never use static mixer without helix inside. Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full min.2x 6 strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar. min. 10cm Prior to injection, check if static mixer reaches the bottom of the drill hole. If it does not reach the bottom, plug Mixer Extension onto static mixer in order to fill the drill hole properly. Fill hole with a sufficient quantity of injection TXXXXXI 7 mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets.


SIKLA Injection System VMZ

Intended use Installation instructions Injection

Installation instructions - Continuation

Installation instructions – Stand-off Installation

SIKLA Injection System VMZ

Intended use

Installation instructions VMZ-A 75 M12 Through-setting installation with clearance between concrete and anchor plate

Installation instructions - Continuation

Anchor rod VMZ-IG Setting of anchor Work step 1-7 as illustrated in Annexes B7 - B9 Insert the anchor rod VMZ-IG by hand, rotating slightly up to about 1 mm below the concrete surface in the drill hole. The anchor rod is properly set 8 when excess mortar seeps from the hole. If the hole is not completely filled, pull out anchor rod, let mortar cure, drill out hole and repeat the entire cleaning process. °C Follow minimum curing time shown in Table B1 and Table B2. 9 During curing time anchor rod must not be moved or loaded. 10 Remove excess mortar. **T**inst The fixture can be mounted after curing time. Apply installation torque Tinst Ę 11 according to Table B7 by using torque wrench. SIKLA Injection System VMZ Intended use Annex B12

Installation instructions Anchor installation VMZ-IG

Table C1: Characteristic values for concrete failure and splitting VMZ-A Anchor size all sizes VMZ-IG Concrete cone failure uncracked concrete [-] 11,0 kucr,N Factor 7,7 cracked concrete [-] k_{cr.N} 1,5 • h_{ef} Characteristic edge distance [mm] Ccr.N Characteristic spacing [mm] 2 · Ccr,N Scr,N Splitting For each proof of splitting failure, NRk,sp shall be calculated according to EN 1992-4:2018, equation (7.23). The higher value for N_{Rk,sp} of case 1 and case 2 may be applied for the design. Case 1 N⁰Rk,sp Characteristic resistance [kN] see following tables Characteristic edge distance [mm] 1,5 · h_{ef} Ccr,sp Characteristic spacing [mm] 2 · Ccr,sp Scr,sp Case 2 $N^0_{\mathsf{Rk},\mathsf{sp}}$ Characteristic resistance [kN] min $[N_{Rk,p}; N^{0}_{Rk,c}]$ Characteristic edge distance [mm] see following tables Ccr,sp Characteristic spacing [mm] 2 · Ccr,sp Scr,sp

Table C2: Characteristic values for tension loads, VMZ-A M8 – M12, static and quasi-static action

static and quasi-static	action	ו										
Anchor size	VMZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor γ_{ins}	t [-]						1,0					
Steel failure												
Characteristic resistance N _{Rk} ,	s [kN]	15	18	2	25	35	49	5	4		57	
Partial factor γ _{Ms}	[-]						1,5					
Pull-out												
Characteristic resistance (concrete C	20/25)									_		
<u>uncracked</u> 50°C / 80°C ¹⁾ concrete 72°C / 120°C ¹⁾ N _{Rk,f}	[kN] [kN]	9 6	17,4 9	22,9 16	32 16	32 16	28,8 16	35,2 25	40 25	49,2 30	50 30	50 30
cracked concrete 50°C / 80°C ¹⁾ 72°C / 120°C ¹⁾ N _{Rk,f}	[kN] [kN]	8,7 5	12,2 7,5	16 12	22,4 12	22,4 12	20,2 16	24,6 20	31,9 20	34,4 30	39,7 30	48,1 30
Splitting				•								
Splitting for standard thickness of co	oncrete	mem	ber	-		-						
Standard thickness of concrete hmin,1 2	[mm]	1	00	120	150	150	140	160	190	200	220	250
Case 1			1									
Characteristic resistance (concrete C20/25) N ⁰ _{Rk,s}	[kN]	7,5	9	16	20	2	0	35,2	30		40	
Case 2								1				
Characteristic edge distance c _{cr,sl}	5 [mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2,5h _{ef}	2 h _{ef}	3 h _{ef}	2,5h _e
Splitting for minimum thickness of c	oncrete	e mem	lber	-		-						
Minimum thickness of concrete h _{min,2} 2	: [mm]	8	30	1(00		110		125	130	140	160
Case 1			1					1		1		
Characteristic resistance (concrete C20/25) N ⁰ _{Rk,s}	5 [kN]	7,5	2)	1	6	16	20	25	25		30	
Case 2		•						1		1		
Characteristic edge distance c _{cr,s}	[mm]	3h _{ef}	3,5h _{ef}	3 h _{ef}	3,5h _{ef}	3,5	h _{ef}	3h _{ef}	3,5h _{ef}		3h _{ef}	
Increasing factor for $N_{Rk,p}$ and $N^0_{Rk,sp}$ (Case 1) $\psi_{Rk,p} = \psi_c \cdot N_{Rk,p}$ (C20/25)	. [-]					($\left(\frac{f_{ck}}{20}\right)^{0.5}$	5				
Concrete cone failure												
Effective anchorage depth he	f [mm]	40	50	60	75	75	70	80	95	100	110	125
 ¹⁾ Maximum long-term temperature / Maxi²⁾ No performance assessed 	mum sh	ort-tern	n tempe	erature								
SIKLA Injection System VMZ												

Performance

Characteristic values for tension loads, VMZ-A M8 – M12, static and quasi-static action

Table C3: Characteristic values for tension loads, VMZ-A M16 – M24, static and quasi-static action

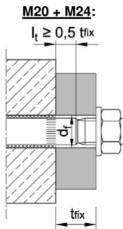

Anchor size	v	MZ-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)		
Installation factor	γinst	[-]						1,0							
Steel failure															
Characteristic Steel, zir	nc plated	[kN]	88	95	1	11	97	96	18	38		222			
	4, HCR	[kN]	88	95	1	11	97	114	16	65		194			
Partial factor	γMs	[-]			1,5			1,68	1,	,5	1,5				
Pull-out															
Characteristic resistance (concrete	C20/2	5)												
uncracked 50°C/80°C concrete 72°C/120°C		[kN]	42	52,9	68,8	75	90	60,7		128,8	109	139,1	166		
		[kN] [kN]	25 35 5 29,4 37,1 48,1			60,1	53 69,7	40 42,5	76,3	5 90,2	76,3	95 97,4	116,2		
cracked 50°C/80°C concrete 72°C/120°C		[kN]	29,4 25	37,1	· · ·	0 0	51	42,5 30	-	90,2 0	70,3	97,4 75	110,2		
Splitting					-										
	plitting for standard thickness of concrete														
Standard thickness of concrete	320	230	340	380	340	400	450								
Case 1				1	1										
Characteristic resistance (concrete C20/25)	N^0 Rk,sp	[kN]	40	5	0	60	80	60,7	109	115	109	139,1	140		
Case 2				•											
Characteristic edge distance	Ccr,sp	[mm]			2 h _{ef}			1,5	h _{ef}	2 h _{ef}	1,5	h _{ef}	1,8 h _{et}		
Splitting for minimum thic	kness o	of conc	rete		_										
Minimum thickness of concrete	$h_{\text{min},2} \geq$	[mm]	130	150	160	180	200	160	220	240	220	260	290		
Case 1															
Characteristic resistance (concrete C20/25)	N^0 Rk,sp	[kN]	35	50	40	50	71	2)	7	5	109	11	5		
Case 2						_									
Characteristic edge distance	C cr,sp	[mm]	2,5	5h _{ef}	3h _{ef}	2,5	Shef	2,5h _{ef}	2,6h _{ef}	2,2h _{ef}	2,6h _{ef}	2,2	h _{ef} ?		
Increasing factor for $N_{Rk,p}$ and $N_{Rk,sp}$ (case 1)	Ψc	[-]						$\left(\frac{f_{ck}}{20}\right)^{0.5}$	5						
$N_{Rk,p} = \psi_c \cdot N_{Rk,p} (C20/25)$ Concrete cone failure								,							
Effective anchorage depth	h.	[mm]	90	105	125	145	160	115	170	190	170	200	225		
¹⁾ Maximum long-term tempera ²⁾ No performance assessed									170	100	170	200	220		
SIKLA Injection Syste	m VMZ														
Performance Characteristic values for t static and quasi-static act		oads,	VMZ-A	A M16 -	- M24,						An	nex C	3		

Table C4: Characteristic values for shear load, VMZ-A M8 – M12,static and quasi-static action

Anchor size	VMZ	-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Installation factor	γinst	[-]						1,0					
Steel failure with	hout lever arm												
Characteristic resistance	Steel, zinc plated	[kN]	1	4	2	1				34			
V ⁰ _{Rk,s}	A4, HCR	[kN]	1	5	2	3				34			
Partial factor	γ́Ms	[-]						1,25					
Ductility factor	k 7	[-]] 1,0										
Steel failure with	h lever arm												
Characteristic bending	Steel, zinc plated	[Nm]	3	0	6	0				105			
resistance M ⁰ _{Rk,s}	A4, HCR	[Nm]	3	0	6	0				105			
Partial factor	γMs	[-]						1,25					
Concrete pry-ou	ıt failure												
Pry-out factor	k ₈	[-]						2					
Concrete edge f	ailure												
Effective length c in shear load	f anchor I _f	[mm]	40	50	60	75	75	70	80	95	100	110	125
Outside diameter	of anchor d _{nom}	[mm]	nm] 10 12 12 14										

Table C5: Characteristic values for shear load, VMZ-A M16 – M24, static or quasi-static action

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Installation factor	γinst	[-]						1,0					
Steel failure without	ut lever arm												
Characteristic resistance	Steel, zinc plated	[kN]			63			70		9 ¹⁾ 18)		178 ¹⁾ (141)	
V ⁰ _{Rk,s}	A4, HCR	[kN]			63			86		1 ¹⁾ 6)		156 ¹⁾ (123)	
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25	
Ductility factor	k 7	[-]						1,0					
Steel failure with le	ever arm												
Characteristic bending resistance	el failure with lever arm aracteristic Steel, zinc nding resistance plated				266			392	5	19		896	
M ⁰ _{Rk,s}	A4, HCR	[Nm]			266				454			784	
Partial factor	γMs	[-]			1,25			1,4	1,	25		1,25	
Concrete pry-out fa	ailure												
Pry-out factor	k ₈	[-]						2,0					
Concrete edge fail	ure												
in shear load	ective length of anchor If [105	125	145	160	115	170	190	170	200	225
Outside diameter of anchor	d _{nom}	[mm]			18			22	2	4		26	
¹⁾ This value may only	be applied if It	≥ 0,5 t _{fi} :	x										

Anchor size			VMZ	-A	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load	s												
Installation fac	tor		γinst	[-]					1,0				
Steel failure,	steel zinc	plated, st	ainless steel A4,	HCR			_						
Characteristic	resistance		Nrk,s,C1 Nrk,s,C2	[kN]	2	5	35	49	5	4		57	
Partial factor			γMs	[-]					1,5				
Pull-out (cond	rete C20/2	25 to C50/6	60)										
		No. or -	50°C / 80°C ¹⁾	[kN]	14	l,5	14	1,5	30	,6	36,0	41,5	42,8
Characteristic	·	N _{Rk,p,C1} -	72°C / 120°C ¹⁾	[kN]	10),9	10),9	20	,0		30,0	
resistance		50°C / 80°C ¹⁾	[kN]	7	,4	7	,4	8,	7		17,6		
		N _{Rk,p,C2} -	72°C / 120°C ¹⁾	[kN]	5	,1	5	,1	6,	5		12,3	
Shear loads													
	vithout lev	er arm et	eel zinc plated										
	vitioutiev	er ann, si	V _{Rk,s,C1}	[kN]	1	1,8	1			27,2			
Characteristic	resistance		VRk,s,C2	[kN]		2,6				27,2			
Partial factor			γMs	[-]		_,0			1,25	,_			
Steel failure v	vithout lev	er arm, si	ainless steel A4										
		-	V _{Rk,s,C1}	[kN]	12	2,9	1			27,2			
Characteristic	resistance		V _{Rk,s,C2}	[kN]	1:	3,8				27,2			
Partial factor			γMs	[-]					1,25				
Factor for	filled a	Innular ga	O αgap	[-]					1,0				
anchorages with	unfilled a	Innular ga	ο α _{gap}	[-]					0,5				
⁾ Maximum long-	term tempe	rature / Ma:	ximum short-term te	emperati	ure								

SIKLA Injection System VMZ

Performance Characteristic values for seismic action, VMZ-A M10 – M12, performance category C1 and C2

Annex C6

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	
Tension loads													
Installation factor	γinst	[-]						1,0					
Steel failure, steel zi	nc plated												
Characteristic resistance	N _{Rk,s,C1} N _{Rk,s,C2}	[kN]	88	95	11	1	97	96	18	8		222	
Steel failure, stainles	ss steel A4, HC	R											
Characteristic resistance	Nrk,s,C1 Nrk,s,C2	[kN]	88	95	11	1	97	114	16	5		194	
Partial factor	γMs	[-]			1,5			1,68	1,	5		1,5	
Pull-out (concrete C2	0/25 to C50/60)												
Ne	50°C / 80°C ¹⁾	[kN]	30,7	38,7		43,7		44,4	88	,2		90,7	
Charac- teristic	72°C / 120°C ¹⁾	[kN]	25,0	30,0		38,5		29,4	55	,8		59,3	
resistance	50°C / 80°C ¹⁾	[kN]	16,3	22,1		26,1		30,9	59	,7		59,7	
NRk,p,C2	72°C / 120°C 1)	[kN]	10,5	14,4		19,5		16,2	44	,4		44,4	
Shear loads													
Steel failure without	V _{Rk,s,C1}	[kN]	plated	d	39,1			39,1	82,3	2		107	
Characteristic									108,8			4,9 ¹⁾	
resistance	V _{Rk,s,C2}	[kN]			50,4			51	(71,			22,7)	
Partial factor	γMs	[-]			1,25			1,4	1,2	5	1	,25	
Steel failure without	lever arm, stair	nless	steel	A4, HC	R								
Characteristic	V _{Rk,s,C1}	[kN]			39,1			39,1	72,2	2		93	
resistance	VRk,s,C2	[kN]			50,4			62,6	95,6 (62,8			5,7 ¹⁾ 107)	
Partial factor	γMs	[-]			1,25			1,4	1,2	5	1	,25	
Factor forfilled ann	· ·	[-]						1,0					
anchorages unfillec with	l annular gap ^{αgap}	[-]						0,5					

SIKLA Injection System VMZ

Annex C7

Table C8: Displacements under tension loads, VMZ-A M8 – M12	Table C8: Displacements under tension loads,	VMZ-A M8 – M12
---	--	----------------

Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Dicplacement	δηο	[mm]	0,	5	0,5	0,6			0,6			0,	7
Displacement	δn∞	[mm]						1,3					
Tension load in uncracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
Displacement	δηο	[mm]	0,2	0,4	0	,4			0,4			0,	6
Displacement	δ _{N∞}	[mm]						1,3					
Displacements under seismic te	nsion	loads	C2										
Displacements for DLS $\delta_{N,N}$	C2(DLS)	[mm]	no pe		1,	0	1,	0	1	,3		1,1	
Displacements for ULS $\delta_{N,K}$	C2(ULS)	[mm]	ma asse		3,	0	3,	0	3	,9		3,0	

Table C9: Displacements under tension loads, VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	Ν	[kN]	14,6	18,4	24,0	30,0	34,7	21,1	38,0	44,9	38,0	48,5	57,9
Displacement	δνο	[mm]		0,7		0,8	1,2	0,7	0	,8	0,8	0,	,9
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Tension load in uncracked concrete	N	[kN]	20,5	25,9	33,0	35,7	48,1	29,6	53,3	63,0	53,3	67,9	81,1
Dianlocoment	δνο	[mm]		0	,6		0,8	0,5	0	,6		0,6	
Displacement	δn∞	[mm]		1	,3		1,6	1,1	1	,3		1,3	
Displacements under seismic te	nsion	loads	C2										
Displacements for DLS $\delta_{N,N}$	C2(DLS)	[mm]	1	,6		1,5		1,7	1	,9		1,9	
Displacements for ULS $\delta_{N,N}$	C2(ULS)	[mm]	3	,7		4,4		4,0	4	,5		4,5	

SIKLA Injection System VMZ

Performance

Displacements under tension loads, VMZ-A

Table C10: Displacements under shear loads VMZ-A M8 – M12

Anchor size	VM	Z-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Shear load	V	[kN]	8,	3	13	,3				19,3			
Diaplacemente	δνο	[mm]	2,4	2,5	2,	9				3,3			
Displacements	δν∞	[mm]	3,6	3,8	4,	4				5,0			
Displacements under seis	mic shea	ar load	s C2										
Displacements for DLS	δ V,C2(DLS)	[mm]		erfor-	2,	1				2,5			
Displacements for ULS	δ V,C2(ULS)	[mm]	ma asse		3,	7				5,1			

Table C11: Displacements under shear loads VMZ-A M16 – M24

Anchor size	VM	Z-A	90 M16	105 M16	125 M16	145 M16	160 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load	V	[kN]			36			44	7 (4	5 9)		89 (71)	
Diaplacemente	δνο	[mm]			3,8			3,0	4, (3,			4,6 (3,5)	
Displacements	δν∞	[mm]			5,7			4,5	(3,0) 6,5 (4,5)			6,9 (5,3)	
Displacements under seism	ic shea	ar load	s C2										
Displacements for DLS δ_{V}	/,C2(DLS)	[mm]			2,9				3,5			3,7	
Displacements for ULS δ_{V}	/,C2(ULS)	[mm]			6,8				9,3			9,3	

Anchor size		v	/MZ- IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Installation factor		γinst	[-]						1	,0					
Steel failure															
Characteristic	Steel, zinc	plated	[kN]	15	16	19	29	3	5		67		52	125	108
resistance N _{Rk,s}	A4	, HCR	[kN]	1	1	19	21	3	3		47		65	88	94
Partial factor		γMs	[-]						1,	,5					
Pull-out															
Characteristic resista	nce (concre	te C20	/25)												
uncracked 50°	C / 80°C ¹⁾	N _{Rk,p}	[kN]	9	17,4	22,9	32	28,8	35,2	42	52,9	68,8	60,7	109	109
concrete 72°C	/ 120°C ¹⁾	тянк,р	[kN]	6	9	16	16	16	25	25	35	50	40	75	95
	C / 80° C ¹⁾	N _{Rk,p}	[kN]	8,7	12,2	16	22,4	20,2	24,6	29,4	37,1	48,1	42,5	76,3	76,3
concrete 72°C	/ 120° C ¹⁾	тчпк,р	[kN]	5	7,5	12	12	16	20	20	30	50	30	60	75
Splitting															
Splitting for standar	d thicknes	s of co	oncrete	e											
Standard thickness of	concrete h	n _{min,1} ≥	[mm]	1(00	120	150	140	160	180	200	250	230	340	340
Case 1															
Characteristic resistar (concrete C20/25)	nce N	∫ ⁰ Rk,sp	[kN]	7,5	9	16	20	20	35,2	40	50	50	60,7	109	109
Case 2															
Characteristic edge d	istance	Ccr,sp	[mm]	3	h _{ef}	2,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}		2 h _{ef}		1,5	h _{ef}	1,5h
Splitting for minimu	m thicknes	s of c	oncret	e											
Minimum thickness of	concrete h	n _{min,2} ≥	[mm]	8	0	100	110	1.	10	130	150	160	160	220	220
Case 1															
Characteristic resistan (concrete C20/25)	nce M	┨ ⁰ Rk,sp	[kN]	7,5	2)	1	6	20	25	35	50	40	2)	75	109
Case 2						-									
Characteristic edge d	istance	Ccr,sp	[mm]	3h _{ef}	3,5h _{ef}	3h _{ef}	3,5h _{ef}	3,5h _{ef}	3h _{ef}	2,5h _{ef}	2,5h _{ef}	3h _{ef}	2,5h _{ef}	2,6h _{ef}	2,6h
Increasing factor for $N_{Rk,p}$ and $N^{0}_{Rk,sp}$ (case $N_{Rk,p} = \psi_{c} \cdot N_{Rk,p}$ (C20)	,	Ψ¢	[-]						$\left(\frac{f_{ck}}{20}\right)$) ^{0,5}					
Concrete cone failu															
Effective anchorage of	depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
⁾ Maximum long-term ter ⁾ No performance asses		<i>l</i> laximu	m short	-term	temper	ature		I			1	I			

Characteristic values for tension loads, VMZ-IG

Table C13: Characteristic values for shear load, VMZ-IG

				1.012				-							
Anchor size	VN	IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12		125 M12	115 M16	170 M16	170 M20	
Installation factor	2/1	[-]	MO	MIC	INIO	MO			,0	10112	14112	NITO	MITO	IVIZO	
	γinst -	[-]						1,	,0						
Steel failure without	lever arm						-								
Characteristic	Steel, zinc plated	[kN]	8,	0	9,5	15	1	8		34		26	63	54	
resistance V ⁰ Rk,s	A4, HCR	[kN]	5,	5	9,5	10	1	6		24		32	44	47	
Partial factor	γMs	[-]						1,:	25						
Ductility factor	k 7	[-]						1,	,0						
Steel failure with lev	Steel failure with lever arm														
Characteristic	Steel, zinc plated	[kN]	1	2	3	0	6	0		105		212	266	519	
bending resistance M ⁰ _{Rk,s}	A4, HCR	[kN]	8,	5	2	1	4	2		74		187	187	365	
Partial factor	γMs	[-]						1,	25						
Concrete pry-out fai	lure														
Pry-out factor	k ₈	[-]						2	,0						
Concrete edge failu	re														
Effective length of and shear load	chor in I _f	[mm]	40	50	60	75	70	80	90	105	125	115	170	170	
Outside diameter of a	inchor d _{nom}	[mm]	1	0	1	2	1	4		18		22	24	26	

Table C14: Displacements under tension loads, VMZ-IG

Anchor size	VN	/IZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12		170 M16	170 M20
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	10,0	12,3	14,6	18,4	24,0	21,1	38,0	38,0
Dianlagement	δνο	[mm]	0,	5	0,5	0,6	0,	6		0,7		0,7	0,8	0,8
Displacement	δn∞	[mm]					1,3					1,1	1,3	1,3
Tension load in uncracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	14,1	17,2	20,5	25,9	33,0	29,6	53,3	53,3
Displacement	δΝΟ	[mm]	0,2	0,4	0,	4	0,	4		0,6		0,5	0,6	0,6
Displacement	δN∞	[mm]					1,3					1,1	1,3	1,3

Table C15: Displacements under shear loads, VMZ-IG

Anchor size	VI	MZ-IG	40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Shear load Steel, zinc plated	V	[kN]	4,	6	5,4	8,4	10	,1		19,3		14,8	35,8	30,7
Dieplessment	δνο	[mm]	0,	4	0,5	0,4	0,	5		1,2		0,8	1,9	1,2
Displacement	δν∞	[mm]	0,	7	0,8	0,7	0,	8		1,9		1,2	2,8	1,9
Shear load Stainless steel A4 / HCR	V	[kN]	3,	2	5,4	5,9	9,	3		13,5		18,5	25,2	26,9
Displacement	δνο	[mm]	0,	3	0,5	0,3	0,	5		0,9		1,0	1,4	1,1
Displacement	δν∞	[mm]	0,	4	0,7	0,5	0,	7		1,4		1,5	2,1	1,6

SIKLA Injection System VMZ

Performance

Characteristic values for shear load VMZ-IG, Displacements VMZ-IG

Annex C11