

DECLARATION OF PERFORMANCE

DoP Nr.: Sikla-2.1-301 en

Unique identification code of product-type: Sikla Injection System VMU plus for concrete

Intended use/es: Bonded fastener for use in concrete,

see Annex B

Manufacturer: Sikla Holding GmbH

Kornstraße 4

4614 Marchtrenk - Österreich

System/s of AVCP:

EAD 330499-01-0601 **European Assessment Document:** ETA-15/0270, 17.12.2021 European Technical Assessment:

Technical Assessment Body: DIBt, Berlin

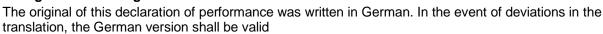
Notified body/ies: NB 2873 - Technische Universität Darmstadt

Declared performance/s:

Essential characteristics	Performance
Mechanical resistance and stability (BWR 1)	
Characteristic resistance to tension load (static and quasi-static loading)	Annex B2, C1, C3, C4, C7, C9
Characteristic resistance to shear load (static and quasi-static loading)	Annex C2, C5, C8, C10
Displacements (static and quasi-static loading)	Annex C12, C13
Characteristic resistance and displacements for seismic performance category C1	Annex C6, C11
Characteristic resistance and displacements for seismic performance category C2	NPD
Hygiene, health and the environment (BWR 3)	
Content, emission and/or release of dangerous substances	NPD

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:


Günter Brugger (Head of IPRM)

Achim Münch

Villingen-Schwenningen 27.09.2022

(Head of Management Systems)

H. M.C

Specification of intended use

Sikla Injection System VMU plus	Threaded rod	Internally threaded anchor rod	Rebar
Static and quasi-static action	M8 - M30	IG-M6 - IG-M20 (zinc plated, A4, HCR)	Ø8 - Ø32
Seismic action, performance category C1	M8 - M30	-	Ø8 - Ø32
Base materials	(without fibe strength classes C20/	r unreinforced normal we rs), acc. to EN 206:2013 /25 to C50/60 acc. to EN 2 ked and uncracked concre	+ A1:2016 206-1:2013+A1:2016
Temperature Range I -40°C to +40°C	max long term temperatur	e +24 °C and max short te	rm temperature +40°C
Temperature Range II -40°C to +80°C	max long term temperatur	e +50 °C and max short te	rm temperature +80°C
Temperature Range III -40°C to 120°C	max long term temperatur	e +72 °C and max short te	rm temperature +120°C

Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (all materials).
- · For all other conditions:

Intended use of Material according to Annx A4, Table A1 corresponding corrosion resistance classes CRC according to EN 1993-1-4:2006 +A1:2015

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.)
- · Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work
- Fasteners are designed in accordance with EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry or wet concrete: M8 to M30, IG-M6 to IG-M20, Rebar Ø8 to Ø32
- Waterfilled holes (not sea water): M8 to M16, IG-M6 to IG-M10, Rebar Ø8 to Ø16
- · Hole drilling by hammer or compressed air drill mode or vacuum drill mode
- Installation direction D3: downwards, horizontally and upwards (overhead) installation
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- The injection mortar is assessed for installation at minimum concrete temperature of -10°C resp. -20°C, where subsequently the temperature in the concrete does not rise at a rapid rate, i.e. from the minimum installation temperature to 24°C within a 12-hour period.
- Internally threaded anchor rod: screws and threaded rods (incl. nut and washer) must at least correspond to the material and strength class of the internally threaded anchor rod used

Sikla Injection System VMU plus for concrete	
Intended Use Specifications	Annex B1

Table B1: Installation parameters for threaded rod

Threaded rod				M8	M10	M12	M16	M20	M24	M27	M30
Diameter threaded	rod d=	dnom	[mm]	8	10	12	16	20	24	27	30
Nominal drill hole diameter d ₀		[mm]	10	12	14	18	24	28	32	35	
Effective anchorage depth	donth h	lef,min	[mm]	60	60	70	80	90	96	108	120
Ellective anchorage		ef,max	[mm]	160	200	240	320	400	480	540	600
Diameter of clearance	Pre-setting installation	d _f ≤	[mm]	9	12	14	18	22	26	30	33
hole in the fixture	Through setting installation	d _f ≤	[mm]	12	14	16	20	26	30	33	40
Installation torque r	max T	Γ _{inst} ≤	[Nm]	10	20	40 (35) ¹⁾	80	120	160	180	200
Minimum thickness of member h _{min}		[mm]	h _{ef} + 3	0mm ≥ 1	00mm			h _{ef} + 2d ₀			
Minimum spacing		Smin	[mm]	40	50	60	80	100	120	135	150
Minimum edge dista	ance	Cmin	[mm]	40	50	60	80	100	120	135	150

¹⁾ max. installation torque for property class 4.6

Table B2: Installation parameters for internally threaded anchor rod

Internally threaded anchor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20
Inner diameter of threaded rod	d ₂	[mm]	6	8	10	12	16	20
Outer diameter of threaded rod1) d=	d _{nom}	[mm]	10	12	16	20	24	30
Nominal drill hole diameter	d₀	[mm]	12	14	18	24	28	35
Effective anchorage depth h	ef,min	[mm]	60	70	80	90	96	120
h _e	ef,max	[mm]	200	240	320	400	480	600
Diameter of clearance hole in the fixture	d₁≤	[mm]	7	9	12	14	18	22
Installation torque max T	inst≤	[Nm]	10	10	20	40	60	100
Minimum screw-in depth	lıg	[mm]	8	8	10	12	16	20
Minimum thickness of member	h _{min}	[mm]		30 mm 0 mm		h _{ef} +	- 2d ₀	
Minimum spacing	Smin	[mm]	50	60	80	100	120	150
Minimum edge distance	Cmin	[mm]	50	60	80	100	120	150

¹⁾ with metric thread acc. to EN 1993-1-8:2005+AC:2009

Table B3: Installation parameters for rebar

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Diameter rebar	$d=d_{nom}$	[mm]	8	10	12	14	16	20	25	28	32
Nominal drill hole diameter 1)	d ₀	[mm]	10 12	12 14	14 16	18	20	25	32	35	40
Effective anchorage depth —	h _{ef,min}	[mm]	60	60	70	75	80	90	100	112	128
Effective anchorage depth —	h _{ef,max}	[mm]	160	200	240	280	320	400	500	560	640
Minimum thickness of member	h _{min}	[mm]	12.00	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d	0		
Minimum spacing	Smin	[mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	Cmin	[mm]	40	50	60	70	80	100	125	140	160

¹⁾ for Ø8, Ø10 and Ø12 both nominal drill hole diameter can be used

Sikla Injection System VMU plus for concrete

Intended Use

Installation parameters

Table B4: Parameter cleaning and setting tools

Threaded rod	Internally threaded anchor rod	Rebar	Drill bit	Brush Ø	min. Brush Ø	Retaining washer						
		99711111111111		Go CHARACARTAR AND COMME				tion direct retaining v				
[-]	[-]	Ø [mm]	d₀ [mm]	d₅ [mm]	d _{b,min} [mm]	[-]	1	→	1			
M8			10	12	10,5							
M10	VMU-IG M 6	8 / 10	12	14	12,5	No.						
M12	VMU-IG M 8	10 / 12	14	16	14,5	No retaining washer required						
		12	16	18	16,5							
M16	VMU-IG M10	14	18	20	18,5	VM-IA 18						
		16	20	22	20,5	VM-IA 20						
M20	VMU-IG M12	20	24	26	24,5	VM-IA 24						
M24	VMU-IG M16		28	30	28,5	VM-IA 28	h _{ef} > 250mm	h _{ef} > 250mm	all			
M27		25	32	34	32,5	VM-IA 32						
M30	VMU-IG M20	28	35	37	35,5	VM-IA 35						
		32	40	41,5	40,5	VM-IA 40						

Blow-out pump (volume 750ml)

Drill bit diameter (d₀): 10 mm to 20 mm Anchorage depth (h_{ef}): \leq 10 d_{nom}

for uncracked concrete

Recommended compressed air tool (min 6 bar)

All applications

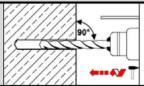
Retaining washer for overhead or horizontal installation

Drill bit diameter (d₀): 18 mm to 40 mm

Steel brush

Drill bit diameter (d₀): all diameters

Sikla Injection System VMU plus for concrete

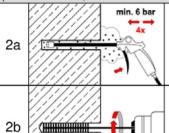

Intended Use

Cleaning and setting tools

Installation instructions

Drilling of the hole

1


Drill the hole by applying the drilling method acc. to Annex B1, the drill bit diameter (Table B4) and the selected drill hole depth. In case of aborted hole, the drill hole shall be filled with mortar

Cleaning, all drilling methods

Attention! Standing water in the drill hole must be removed before cleaning!

Cleaning with compressed air

(all diameters, cracked and uncracked concrete)

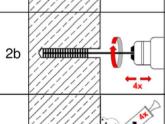
Starting from the bottom or back of the drill hole, blow out the hole with compressed air (min. 6 bar) four times, until return air stream is free of noticeable dust.

If the drill hole ground is not reached, an extension must be used.

Brush the hole with an appropriate sized wire brush > db.min (Table B4) four

If the drill hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with compressed air (min. 6 bar) four times, until the outgoing airstream is free of dust. If the drill hole ground is not reached an extension shall be used.


Manual cleaning

2

uncracked concrete: Drill hole diameter d₀ ≤ 20mm and effective anchorage depth h_{ef} ≤ 10 d_{nom} cracked concrete: Drill hole diameter: 14mm ≤ d₀ ≤ 20mm and effective anchorage depth hef ≤ 10 dnom

Starting from the bottom or back of the drill hole, blow the hole clean with the blow-out pump four times until retur air stream is free of noticeable dust.

Brush the hole **four** times with an appropriate sized wire brush > d_{b,min} (Table B4).

If the drill hole ground is not reached, a brush extension shall be used.

Finally blow the hole clean again with the blow-out pump four times until retur air stream is free of noticeable dust.

After cleaning, the drill hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the drill hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the drill hole again.

Sikla Injection System VMU plus for concrete

Intended Use

2c

Installation instructions

Installation instructions (continuation)

Injection Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. For every working interruption longer than the recommended 3 working time (Table B5 or Table B6) as well as for new cartridges, a new static-mixer shall be used. Before injecting the mortar, mark the required anchorage depth on the fastening 4 element. Prior to dispensing into the drill hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar 5 shows a consistent grey colour. For tubular film cartridges dismiss a minimum of six full strokes. Starting from the bottom or back of the cleaned drill hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid air pockets. For embedment larger than 190mm an extension 6a nozzle shall be used. Observe the gel-/ working times given in Table B5 or Table B6. Retaining washer and mixer nozzle extensions shall be used according to Annex B3 for the following applications: • Horizontal installation (horizontal direction) and ground installation (vertical 6b downwards direction): Drill bit-Ø $d_0 \ge 18$ mm and embedment depth $h_{ef} > 250$ mm Overhead installation: Drill bit-Ø d₀ ≥ 18 mm

Installation instructions (continuation)

Installation instructions (continuation)

Setting the fastening element Push fastening element into the hole while turning slightly to ensure proper 7 distribution of the adhesive until the embedment depth is reached. The fastener shall be free of dirt, grease, oil or other foreign material. #W Make sure that the fastening element is fully seated up to the full embedment depth and that excess mortar is visible at the top of the hole. If these requirements are not 8 maintained, the application has to be renewed before the end of the working time. For overhead installation, the fastener should be fixed (e.g. by wedges). Allow the adhesive to cure to the specified time prior to applying any load or torque. 9 Do not move or load the fastener until it is fully cured (Table B5 or Table B6). 10 Remove excess mortar. The fixture can be mounted after curing time. Apply installation torque ≤ T_{inst} 11 according to Table B1or B2. Optionally, for pre-setting installation, the annular gap between anchor rod and attachment can be filled with mortar. Therefor replace the regular washer by washer 12 with drill and plug on reducing adapter on static mixer.

Annular gap is completely filled, when excess mortar seeps out.

Sikla Injection System VMU plus for concrete

Intended Use

Installation instructions (continuation)

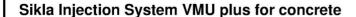
Table B5: Maximum processing time and minimum curing time, VMU plus

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾				
- 10°C to - 6°C	90 min ²⁾	24 h ²⁾				
- 5°C to - 1°C	90 min	14 h				
0°C to + 4°C	45 min	7 h				
+ 5°C to + 9°C	25 min	2 h				
+ 10°C to + 19°C	15 min	80 min				
+ 20°C to + 29°C	6 min	45 min				
+ 30°C to + 34°C	4 min	25 min				
+ 35°C to + 39°C	2 min	20 min				
+ 40°C	1,5 min	15 min				
Cartridge temperature	+ 5°C to + 40°C					

 $^{^{1)}}$ in wet concrete the curing time must be doubled $^{2)}$ cartridge temperature must be at min. +15°C

Table B6: Maximum processing time and minimum curing time, VMU plus Polar

Concrete temperature	Maximum processing time	Minimum curing time in dry concrete ¹⁾			
- 20°C to - 16°C	75 min	24 h			
- 15°C to - 11°C	55 min	16 h			
- 10°C to - 6°C	35 min	10 h			
- 5°C to - 1°C	20 min	5 h			
0°C to + 4°C	10 min	2,5 h			
+ 5°C to + 9°C	6 min	80 min			
+10°C	6 min	60 min			
Cartridge temperature	- 20°C to + 10°C				


¹⁾ in wet concrete the curing time must be doubled

Sikla Injection System VMU plus for concrete	
Intended Use Processing time and curing time	Annex B7

Table C1: Characteristic steel resistances for threaded rods under tension loads

Thread	ded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure										
Cross sectional area A _s [mm²] 36,6 58,0 84,3 157 245 353 459 56										561	
Charac	cteristic resistance under tens	ion load	1)								
p	Property class 4.6 and 4.8	$N_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
Steel, zinc plated	Property class 5.6 and 5.8	$N_{Rk,s}$	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
zin	Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
S	A2, A4 and HCR Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Stainless steel	A2, A4 and HCR Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
S	A4 and HCR Property class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Partial	factors 2)										
	Property class 4.6	γMs,N	[-]				2	,0			
, ted	Property class 4.8	γMs,N	[-]				1	,5			
Steel, zinc plated	Property class 5.6	γMs,N	[-]				2	,0			
zinc	Property class 5.8	γMs,N	[-]				1	,5			
	Property class 8.8	γMs,N	[-]				1	,5			
SS	A2, A4 and HCR Property class 50	γMs,N	[-]				2,	86			
Stainless steel	A2, A4 and HCR Property class 70	γMs,N	[-]			1	,87			_3)	_3)
Ω	A4 and HCR Property class 80	γMs,N	[-]			1	,6			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

²⁾ in absence of national regulation

³⁾ Fastener type not part of the ETA

Table C2: Characteristic steel resistances for threaded rods under shear loads

Threa	ded rod			М8	M10	M12	M16	M20	M24	M27	M30
Steel	failure										
Cross	sectional area	As	[mm²]	36,6	58,0	84,3	157	245	353	459	561
Chara	cteristic resistance under shear load	1 1)									
Steel	failure <u>without</u> lever arm										
el, lated	Property class 4.6 and 4.8	$V^0_{Rk,s}$	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
Steel, zinc plated	Property class 5.6 and 5.8	$V^0_{Rk,s}$	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
zir	Property class 8.8	$V^0_{Rk,s}$	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
SS	A2, A4 and HCR, property class 50	V^0 Rk,s	[kN]	9	15	21	39	61	88	115	140
Stainless steel	A2, A4 and HCR, property class 70	$V^0_{Rk,s}$	[kN]	13	20	30	55	86	124	_3)	_3)
S	A4 and HCR, property class 80	$V^0_{Rk,s}$	[kN]	15	23	34	63	98	141	_3)	_3)
Steel	failure <u>with</u> lever arm										
, ted	Property class 4.6 and 4.8	$M^0_{Rk,s}$	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
Steel, zinc plated	Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
zir	Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
SS_	A2, A4 and HCR, property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125
Stainless steel	A2, A4 and HCR, property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	_3)	_3)
Ś	A4 and HCR, property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896	_3)	_3)
Partia	l factor ²⁾										
	Property class 4.6	γMs,V	[-]				1,€	67			
eel, plated	Property class 4.8	γMs,V	[-]				1,2	25			
	Property class 5.6	γMs,V	[-]				1,6	67			
Sizinc	Property class 5.8	γMs,V	[-]				1,2	25			
	Property class 8.8	γMs,V	[-]				1,2	25			
SS:	A2, A4 and HCR, property class 50	γMs,V	[-]				2,3	88			
Stainless steel	A2, A4 and HCR, property class 70	γMs,V	[-]			1,5	66			_3)	_3)
S	A4 and HCR, property class 80	γMs,V	[-]			1,3	3			_3)	_3)

¹⁾ the characteristic resistances apply for all anchor rods with the cross sectional area A_s specified here: VMU-A, V-A, VM-A For commercial standard threaded rods with a smaller cross sectional area (e.g. hot-dip galvanized threaded rods M8, M10 according to EN ISO 10684:2004 + AC:2009), the values in brackets are valid.

Sikla Injection System VMU plus for concrete

Performance

Characteristic steel resistances for threaded rods under tension loads

²⁾ in absence of national regulation

³⁾ Fastener type not part of the ETA

Table C3: Characteristic values for concrete cone and splitting failure

Threaded rods / Inte	ernally threaded anchor	rods / R	ebars	all sizes					
Concrete cone failure									
Factor	uncracked concrete	$k_{\text{ucr},N}$	[-]	11,0					
Paciol	cracked concrete	k _{cr,N}	[-]	7,7					
Edge distance		C _{cr,N}	[mm]	1,5 • h _{ef}					
Spacing		S _{cr,N}	[mm]	2 · C _{cr,N}					
Splitting failure									
	h/h _{ef} ≥ 2,0			1,0 • h _{ef}					
Edge distance	2,0 > h/h _{ef} > 1,3	C _{cr,sp}	[mm]	2 • h _{ef} (2,5 - h / h _{ef})					
	h/h _{ef} ≤ 1,3			2,4 • h _{ef}					
Spacing		S _{cr,sp}	[mm]	2 · C _{cr,sp}					

Sikla Injection System	VMU plus	for concrete
------------------------	----------	--------------

Threa	ded	rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel	failu	re											
Chara	cteri	stic resistance		$N_{Rk,s}$	[kN]			A _s • f _{ul}	(or se	e Tabl	le C1)		
Partial factor $\gamma_{Ms,N}$ [-] see Table C1													
Comb	ined	pull-out and c	oncrete failure										
Chara	cter	istic bond resis	stance in <u>uncracked</u>	concrete	C20/25								
	l:	40°C/24°C				10	12	12	12	12	11	10	9
		80°C/50°C	dry or wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5
⊒ ⊃ ⊢	III:	120°C/72°C	1			5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
npe	l:	40°C/24°C				7,5	8,5	8,5	8,5				
Te	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm ²]	5,5	6,5	6,5	6,5	no	o perfo asse	ormand	e
	III:	120°C/72°C				4,0	5,0	5,0	5,0		4550	3300	
Chara	cter	istic bond resis	stance in <u>cracked</u> co	ncrete C	20/25								
	l:	40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	6,5	6,5
ure	II:	80°C/50°C	dry or wet concrete	τRk,cr	[N/mm ²]	2,5	3,5	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range	III:	120°C/72°C				2,0	2,5	3,0	3,0	3,0 3,0 3,5		3,5	3,5
mp	I:	40°C/24°C				4,0	4,0	5,5	5,5	no performanc assessed			
Te	II:	80°C/50°C	waterfilled drill hole	τRk,cr	[N/mm ²]	2,5	3,0	4,0	4,0				е
	III:	120°C/72°C				2,0	2,5	3,0	3,0				
Redu	ction	ıfactor ψ ⁰ sus in o	concrete C20/25										
Temperature range	l:	40°C/24°C	dry or wet			0,73							
perati ange	II:	80°C/50°C	concrete;	ψ^0 sus	[-]	0,65							
Terr	III:	120°C/72°C	waterfilled drill hole			0,57							
					C25/30				1,0	02			
					C30/37				1,0)4			
Increa	sing	factors for τ_{Rk}		217	C35/45				1,0	07			
$t_{Rk} = t$	μ c · τ	_{Rk} (C20/25)		Ψс	C40/50				1,0	08			
					C45/55				1,0	09			
					C50/60				1,	10			
Conc	rete	cone failure											
Relev	ant p	arameter						5	see Ta	ble C3			
Splitt	ing f	ailure											
Relev	ant p	arameter							see Ta	ble C3			
Instal	latio	n factor											
dry or	wet	concrete		γinst	[-]	1,0				1,2			
												rmanc	

Sikla Injection System VMU plus for concrete

Performance

Characteristic values for threaded rods under tension loads

Table C5: Characteristic values for threaded rods under shear loads

Threaded rod		М8	M10	M12	M16	M20	M24	M27	M30		
Steel failure without lever arm											
Characteristic resistance, steel zinc plated, property class 4.6, 4.8, 5.6, 5.8	V ⁰ _{Rk,s} [kN]				0,6 • A _s • f _{uk} (or see table C2)						
Characteristic resistance, steel zinc plated, property class 8.8, stainless steel A2 / A4 / HCR, all property classes	$V^0_{Rk,s}$	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see table C2)								
Ductility factor	k ₇	[-]				1	,0				
Partial factor	γMs,V	[-]				see Ta	able C2				
Steel failure with lever arm											
Characteristic bending moment	$M^0_{\text{Rk},s}$	[Nm]			1,2 • W	el•fuk (c	or see ta	able C2)			
Elastic section modulus	W_{el}	[mm³]	31	62	109	277	541	935	1387	1874	
Partial factor	γMs,V	[-]				see ta	ble C2				
Concrete pry-out failure											
Pry-out Factor	k ₈	[-]				2	,,0				
Concrete edge failure											
Effective length of fastener	lf	[mm]	min(h _{ef} ; 12 d _{nom}) mii (h _{ef} ; 300								
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation factor	γ̃inst	[-]				1	,0				
			•								

Characteristic value for threaded rods under shear loads

Table C6: Characteristic values for threaded rods under tension load, seismic action, performance category C1

Threa	aded	rod	M8	M10	M12	M16	M20	M24	M27	M30			
Steel	failu	re											
Chara	acteri	stic resistance	[kN]				1,0 •	$N_{Rk,s}$					
Partia	al fac	tor		γMs,∨	[-]			5	see Ta	ble C1			
Com	oinec	pull-out and c	oncrete failure										
Chara	acter	istic bond resis	tance in concrete C	20/25 to (C50/60			_					
υ U	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,8	4,5	4,5
range	11:	80°C/50°C	dry or wet concrete	TRk,C1	[N/mm²]	1,6	2,2	2,7	2,7	2,7	2,8	3,1	3,1
	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,1	2,4	2,4
erat	1:	40°C/24°C			[N/mm²]	2,5	2,5	3,7	3,7				
Temperature	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,C1}		1,6	1,9	2,7	2,7] n	e		
_	III:	120°C/72°C				1,3	1,6	2,0	2,0				
Insta	llatio	n factor											
Dry o	r wet	concrete	[-]	1,0 1,2									
Waterfilled drill hole γ _{inst} [-]							1,	4		no	perfo asse:		е

Table C7: Characteristic values for threaded rods under shear load, seismic action, performance category C1

Threaded rod	M8	M10	M12	M16	M20	M24	M27	M30			
Steel failure											
Characteristic res	istance	$V_{Rk,s,C1}$	[kN]	0,7 • V ⁰ _{Rk,s}							
Partial factor		γ̃Ms,∨	[-]	See Table C2							
Factor for annul	ar gap										
Factor for without hole clearance			[-]	1,0							
fasteners	with hole clearance between fastener and fixture	$lpha_{\sf gap}$	[-]	0,5							

Sikla Injection System VMU plus for concrete	
Performance Characteristic values for threaded rods under seismic action, category C1	Annex C6

Tabl	e C8: Characte	eristic values of te	nsio	1 loads	tor inte i	rnally th	nreaded	ancho	r rods		
Interr	nally threaded and	hor rod			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20	
Steel	failure 1)										
	acteristic resistance		$N_{Rk,s}$	[kN]	10	17	29	42	76	123	
steel	zinc plated, strengt	h class 8.8	$N_{Rk,s}$	[kN]	16	27	46	67	121	196	
	ıl factor		γMs,N	[-]	1,5						
	acteristic resistance ess steel A4 / HCR		N _{Rk,s}	[kN]	14	26	41	59	110	124 ²⁾	
Partia	ıl factor		γMs,N	[-]			1,87			2,86	
Combined pull-out and concrete cone failure											
Chara	acteristic bond res	sistance in <u>uncracke</u>	<u>d</u> cond	rete C20/	25						
	I: 40°C/24°C	-l		[N/mm ²]	12	12	12	12	11	9,0	
<u>re</u>	II: 80°C/50°C	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	9,0	9,0	9,0	9,0	8,5	6,5	
Temperature range	III: 120°C/72°C	Control		[N/mm ²]	6,5	6,5	6,5	6,5	6,5	5,0	
mpe	I: 40°C/24°C			[N/mm ²]	8,5	8,5	8,5			•	
Т _е	II: 80°C/50°C	waterfilled drill hole	τ _{Rk,ucr}	[N/mm ²]	6,5	6,5	6,5	no perf	formance a	assessed	
	III: 120°C/72°C		[N/mm ²]	5,0	5,0	5,0					
Chara	acteristic bond res	sistance in <u>cracked</u> o	concre	te C20/25							
Temperature range	I: 40°C/24°C	dry and wet concrete		[N/mm ²]	5,0	5,5	5,5	5,5	5,5	6,5	
	II: 80°C/50°C		τ _{Rk,cr}	[N/mm ²]	3,5	4,0	4,0	4,0	4,0	4,5	
	III: 120°C/72°C	CONTOCOLO		[N/mm ²]	2,5	3,0	3,0	3,0	3,0	3,5	
	I: 40°C/24°C			[N/mm ²]	4,0	5,5	5,5				
Te	II: 80°C/50°C	waterfilled drill hole	τ _{Rk,cr}	[N/mm ²]	3,0	4,0	4,0	no performance	formance a	assessed	
	III: 120°C/72°C			[N/mm ²]	2,5	3,0	3,0				
	ctionfactor ψ ⁰ sus in	n concrete C20/25									
Temperature range	I: 40°C/24°C	dry and wet					0,	73			
nperati range	II: 80°C/50°C	concrete	ψ^0 sus	[-]			0,	65			
Terr	III: 120°C/72°C	waterfilled drill hole					0,	57			
			1	C25/30			1,	02			
				C30/37				04			
	asing factors for τ_{Rk}		Ψc	C35/45				07			
τ _{Rk} =	ψ _c · τ _{Rk} (C20/25)		1 "	C40/50				80,			
				C45/55 C50/60				,09 ,10			
Conc	rete cone failure a	and splitting failure		230,00			',				
	ant parameter						see Ta	able C3			
	llation factor										
	nd wet concrete		γinst	[-]			1	,2			
	filled drill hole		γinst	[-]		1,4			rmance de	etermine	
6.09 /4-25-24	20 27 20 20 20 20	aded rods (incl. nut and			mply with t		rioto mat-				

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic tension resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element.

Sikla Injection System VMU plus for concrete

Performance

Characteristic values for **internally threaded anchor rods** under **tension loads**

²⁾ for VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Table C9: Characteristic values for internally threaded anchor rods under shear loads

Internally threaded anchor rod	ī			IG-M 6	IG-M 8	IG-M 10	IG-M 12	IG-M 16	IG-M 20		
Steel failure without lever arm	1)										
Characteristic resistance,	5.8	V ⁰ Rk,s	[kN]	6	10	17	25	45	74		
steel zinc plated, strength class	8.8	V ⁰ Rk,s	[kN]	8	14	23	34	60	98		
Partial factor		γMs,V	[-]		1,25						
Characteristic resistance, stainless steel A4 / HCR, strength class	70	V ⁰ Rk,s	[kN]	7	13	20	30	55	62 ²⁾		
Partial factor		γMs,V	[-]			1,56			2,38		
Ductility factor		k ₇	[-]			1	,0				
Steel failure with lever arm1)											
Characteristic bending	5.8	M ⁰ Rk,s	[Nm]	8	19	37	66	167	325		
moment, steel zinc plated, strength class	8.8	M ⁰ Rk,s	[Nm]	12	30	60	105	267	519		
Partial factor		γMs,V	[-]			1,	25				
Characteristic bending resistance, stainless steel A4 / HCR, strength class	70	M ⁰ Rk,s	[Nm]	11	26	53	92	234	643 ²⁾		
Partial factor		γMs,V	[-]			1,56			2,38		
Concrete pry-out failure											
Pry-out factor		k ₈	[-]			2	,0				
Concrete edge failure											
Effective length of fastener		lf	[mm]		min (h _{ef} ; 300mm)						
Outside diameter of fastener		d _{nom}	[mm]	10	12	16	20	24	30		
Installation factor		γinst	[-]			1	,0				

¹⁾ fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the internally threaded anchor rod. The characteristic shear resistance for steel failure of the given strength class are valid for the internally threaded anchor rod and the fastening element

Sikla Injection System VMU plus for concrete	
Performance Characteristic values for internally threaded anchor rods under shear loads	Annex C8

²⁾ for VMU-IG M20: Internally threaded rod: strength class 50; Fastening screws or threaded rods (incl. nut and washer): strength class 70

Charac Cross Partial Comb Charac augusta augus	failure cteristic resistance sectional area factor ined pull-out and cteristic bond res I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C II: 80°C/50°C III: 120°C/72°C cteristic bond res I: 40°C/24°C	concrete cone		[kN] [mm²] [-] oncrete C		79	113	154	A _s • f _{uk} ¹ 201 1,4 ²⁾	314	491	616	804
Cross Partial Comb Charac auge Charac	sectional area factor ined pull-out and cteristic bond res l: 40°C/24°C III: 80°C/50°C III: 120°C/72°C II: 80°C/50°C III: 120°C/72°C cteristic bond res	dry and wet concrete waterfilled drill	A _s γ _{Ms,N} failure acked c	[mm²] [-]	220/25	79	113		201		491	616	80
Charactrange Lands Character Lands Character Lands Character Character Lands C	factor ined pull-out and cteristic bond restlements :	dry and wet concrete waterfilled drill	γ _{Ms,N} failure acked c	[-]	220/25	79	113	154		314	491	616	80
Charac Lange Charac	ined pull-out and cteristic bond restlict bo	dry and wet concrete waterfilled drill	failure acked c	oncrete C					1,4 ²⁾				
Charac eaude Laude Charac	Cteristic bond reserved Cteristic bond r	dry and wet concrete waterfilled drill	acked c										
Characature range	I: 40°C/24°C III: 80°C/50°C IIII: 120°C/72°C II: 40°C/24°C III: 80°C/50°C IIII: 120°C/72°C cteristic bond res	dry and wet concrete waterfilled drill											
Charac range	II: 80°C/50°C III: 120°C/72°C I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C cteristic bond res	concrete waterfilled drill	₹Rk,ucr	[N/mm²]	10								
Temperatu range	II: 80°C/50°C III: 120°C/72°C I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C cteristic bond res	concrete waterfilled drill	TRk,ucr	[N/mm²]	10	12	12	12	12	12	11	10	8,
Temperatu range	III: 120°C/72°C I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C cteristic bond res	waterfilled drill			7,5	9,0	9,0	9,0	9,0	9,0	8,0	7,0	6,
Chara	I: 40°C/24°C II: 80°C/50°C III: 120°C/72°C cteristic bond res				5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,
Chara	II: 80°C/50°C III: 120°C/72°C cteristic bond res				7,5	8,5	8,5	8,5	8,5	0,0	0,0	0,0	,
Chara	III: 120°C/72°C cteristic bond re	hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	n	o perfo		е
Chara	cteristic bond re		vnk,uci	[[3///////]	4,0	5,0	5,0	5,0	5,0		asse	ssed	
		sistance in crac	ked con	crete C20		1 0,0	0,0	0,0	0,0				
	I: 40°C/24°C				4,0	5,0	5,5	5,5	5,5	5,5	5,5	6,5	6,
Ψ	II: 80°C/50°C	dry and wet	τ _{Rk,cr}	[N/mm²]	2,5	3,5	4,0	4,0	4,0	4,0	4,0	4,5	4,
atuı	III: 120°C/72°C	concrete	VIII,CI	[]	2,0	2,5	3,0	3,0	3,0	3,0	3,0	3,5	3,
⊕ <u> </u>	I: 40°C/24°C				4,0	4,0	5,5	5,5	5,5	3,0 3,0 3,3			
Te	II: 80°C/50°C	waterfilled drill	τRk,cr	[N/mm²]	2,5	3,0	4,0	4,0	4,0	n	o perfo		е
· -	III: 120°C/72°C	hole	VIII,CI	[,]	2,0	2,5	3,0	3,0	3,0		asse	ssed	
	ctionfactor ψ ⁰ sus in	n concrete C20/	 25		_,-	_,-,-	-,-	-,-	-,-				
000	I: 40°C/24°C	dry and wet							0,73				
nperati	II: 80°C/50°C	concrete	ψ^0 sus	[-]	0,65								
_	III: 120°C/72°C	waterfilled drill hole			=				0,57				
				C25/30					1,02				
				C30/37					1,04				
ncreas	sing factors for τ_{Rk}	r.	M	C35/45					1,07				
τяк = Ψ	J _c · τ _{Rk} (C20/25)		Ψс	C40/50					1,08				
				C45/55					1,09				
_				C50/60					1,10				
	ete cone failure a	and splitting fail	ure		Г					Part SS			
Releva	ant parameter							see	Table	C3			
Install	ation factor												
	d wet concrete		γinst	[-]	1,0				1	,2			
waterfi	illed drill hole		γinst	[-]			1,4		r	no perf	ormano	e asse	sse
	II be taken from the ence of national req		reinforcir	ng bars									
Sikla	Injection Syste	em VMU plus	for cor	crete									
	.,												

Table C11: Characteristic values for rebar under shear load

Rebar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm										
Characteristic resistance V ⁰ Rk,	[kN]				0,5	0 • A _s •	f _{uk} 1)			
Cross sectional area A	[mm²]	50	79	113	154	201	314	491	616	804
Partial factor γ _{Ms} ,	[-]					1,5 ²⁾				
Ductility factor k	[-]					1,0				
Steel failure with lever arm										
Characteristic bending moment M ⁰ Rk,	[Nm]				1,2	· Wel •	fuk ¹⁾			
Elastic section modulus We	[mm³]	50	98	170	269	402	785	1534	2155	3217
Partial factor γ _{Ms} ,	[-]					1,5 ²⁾				
Concrete pry-out failure										
Factor ka	[-]					2,0				
Concrete edge failure										
Effective length of fastener	[mm]		ĵ	min(h _{ef} ;	12 d _{nom})		min(h _{ef} ; 300	mm)
Outside diameter of fastener d _{non}	[mm]	8	10	12	14	16	20	25	28	32
Installation factor γ _{ins}	[-]					1,0				

¹⁾ fuk shall be taken from the specifications of reinforcing bars 2) in absence of national regulation

Sikla Injection System \	VMU	plus	for	concrete
--------------------------	-----	------	-----	----------

Table C12: Characteristic values for rebar under seismic action, tension load performance category C1

Reba	ır					Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel	failu	ıre												
Chara	acter	istic resistance	3	$N_{Rk,s,C1}$	[kN]					A _s • f _{uk} 1)	i			
Cross	sec	tional area		As	[mm²]	50	79	113	154	201	314	491	616	804
Partia	al fac	tor		γMs,N	[-]					1,42)				
Coml	Combined pull-out and concrete cone failur				,									
Char	acte	ristic bond re	20/25 to C	50/60										
ge	l:	40°C/24°C				2,5	3,1	3,7	3,7	3,7	3,7	3,8	4,5	4,5
Temperature range	II:	80°C/50°C	dry and wet concrete	τ _{Rk,C1}	[N/mm ²]	1,6	2,2	2,7	2,7	2,7	2,7	2,8	3,1	3,1
nre	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0	2,0	2,1	2,4	2,4
erat	1:	40°C/24°C				2,5	2,5	3,7	3,7	3,7				
due	II:	80°C/50°C	waterfilled drill hole	τ _{Rk,C1}	[N/mm²]	1,6	1,9	2,7	2,7	2,7	no per	rforman	ce ass	essed
Ľ	III:	120°C/72°C				1,3	1,6	2,0	2,0	2,0				
Insta	Installation factor													
dry ar	dry and wet concrete γ_{inst}					1,0	1,0 1,2							
water	waterfilled drill hole γ_{inst}				[-]	1,4 no performance asse						ssed		

¹⁾ fuk shall be taken from the specifications of reinforcing bars

Table C13: Characteristic values for rebar under seismic action, shear load, performance category C1

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic resistance	$V_{Rk,s,C1}$	[kN]				0,35	5 • A _s •	f _{uk} 1)			
Cross sectional area	As	[mm ²]	50	79	113	154	201	314	491	616	804
Partial factor	γMs,V	[-]					1,52)				
Ductility factor	k ₇	[-]					1,0				

 $^{^{1)}\,}f_{uk}$ shall be taken from the specifications of reinforcing bars $^{2)}$ in absence of national regulation

Performance

Characteristic values for rebar under seismic action, category C1

²⁾ in absence of national regulation

Table C14: Displacement factor under tension loads¹⁾ (threaded rod)

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete C	20/25, stati	c and quasi-st	atic actio	on								
Temperature range I:	δ_{N0} -factor		0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049		
40°C/24°C	δ _{N∞} -factor		0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071		
Temperature range II:	δ_{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
80°C/50°C	δ _{N∞} -factor	$\left[\frac{1}{N/mm^2}\right]$	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Temperature range III:	δ_{N0} -factor		0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119		
120°C/72°C	δ _{N∞} -factor		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172		
Cracked concrete C20	/25, static a	nd quasi-station	c action									
Temperature range I:	δ_{N0} -factor		0,0	90	0,070							
40°C/24°C	δ _{N∞} -factor		0,1	05	0,105							
Temperature range II:	δ_{N0} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,2	219			0,	170				
80°C/50°C	$\delta_{\text{N}\infty}\text{-factor}$	^L N/mm ^{2J}	0,2	255			0,2	245				
Temperature range III:	δ_{N0} -factor		0,2	219	0,170							
120°C/72°C	δ _{N∞} -factor		0,2	255	0,245							

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0-}} \text{ factor } \cdot \tau; \qquad \qquad \tau\text{: acting bond stress for tension load}$

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C15: Displacement factor under shear load¹⁾ (threaded rod)

Threaded rod			М8	M10	M12	M16	M20	M24	M27	M30			
Uncracked concrete	C20/25, stati	c and quasi-s	tatic acti	ion									
All temperature	δ _{vo} -factor	rmm_1	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03			
ranges $\delta_{V\infty}$ -factor $\frac{l}{N}$		^l N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05			
Cracked concrete Ca	Cracked concrete C20/25, static and quasi-static action												
All telliperature		rmm_1	0,12	0,12	0,11	0,10	0,09	0,08	0,08	0,07			
ranges	δ _{V∞} -factor	$[\frac{N}{mm^2}]$	0,18	0,18	0,17	0,15	0,14	0,13	0,12	0,10			

¹⁾ Calculation of the displacement

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

 $δv_0 = δv_0$ -factor · V; V: acting shear load $δv_0 = δv_0$ -factor · V:

Sikla Injection System VMU plus for concrete

Performance

Displacements (threaded rod)

Table C16: Displacement factor under tension load¹⁾ (internally threaded anchor rod)

Internally threaded and	hor rod		IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20	
Uncracked concrete C20)/25, static and	l quasi-static acti	on						
Temperature range I:	δ_{N0} -factor		0,023	0,026	0,031	0,036	0,041	0,049	
40°C/24°C	$\delta_{N\infty}$ -factor		0,033	0,037	0,045	0,052	0,060	0,071	
Temperature range II:	δ_{N0} -factor		0,056	0,063	0,075	0,088	0,100	0,119	
80°C/50°C	$\delta_{N\infty}$ -factor	$\left[\frac{N/mm^2}{N}\right]$	0,081	0,090	0,108	0,127	0,145	0,172	
Temperature range III:	δ_{N0} -factor		0,056	0,063	0,075	0,088	0,100	0,119	
120°C/72°C	δ _{N∞} -factor		0,081	0,090	0,108	0,127	0,145	0,172	
Cracked concrete C20/25	5, static and q	uasi-static action							
Temperature range I:	δ _{N0} -factor		0,090			0,070			
40°C/24°C	δ _{N∞} -factor		0,105			0,105			
Temperature range II:	δ _{N0} -factor	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,219			0,170			
80°C/50°C	δ _{N∞} -factor	^L N/mm ^{2J}	0,255			0,245			
Temperature range III:	δ_{N0} -factor		0,219	0,170					
120°C/72°C δ _{N∞} -facto			0,255	0,245					

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor } \cdot \tau;$ τ : acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

•

Table C17: Displacement factor under shear load¹⁾ (internally threaded anchor rod)

Internally threaded and	hor rod		IG-M6	IG-M8	IG- M10	IG-M12	IG-M16	IG-M20
Uncracked and cracked	concrete C20	/25, static and quas	i-static a	ction				
All tomporature renges	δ _{v0} -factor	$\left[\frac{\text{mm}}{\text{N/mm}^2}\right]$	0,07	0,06	0,06	0,05	0,04	0,04
All temperature ranges	erature ranges δ _{V∞} -factor		0,10	0,09	0,08	0,08	0,06	0,06

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}$ -factor $\cdot V$;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Sikla Injection System VMU plus for concrete

Performance

Displacements (internally threaded anchor rod)

Table C18: Displacement factor under tension load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Uncracked concrete Ca	20/25, static a	and quasi-st	atic act	ion							
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$		0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
40°C/24°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$		0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II:	δ_{N0} -factor		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
80°C/50°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$	^L N/mm ²	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$		0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
120°C/72°C		0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181	
Cracked concrete C20/	25, static and	d quasi-stati	c actior	1							
Temperature range I:	$\delta_{\text{N0}}\text{-factor}$		0,0	90				0,070			
40°C/24°C	$\delta_{\text{N}\infty}\text{-factor}$		0,1	05				0,105			
Temperature range II:	$\delta_{\text{N0}}\text{-factor}$	$\left[\frac{\mathrm{mm}}{\mathrm{N/mm}^2}\right]$	0,2	219				0,170			
80°C/50°C $\delta_{N\infty}$ -factor N/mm^2		0,2	255	0,245							
Temperature range III:	$\delta_{\text{N0}}\text{-factor}$		0,2	219				0,170			
120°C/72°C	$\delta_{\text{N}\infty}\text{-}\text{factor}$		0,2	255				0,245			

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0}$ -factor $\cdot \tau$;

 τ : acting bond stress for tension load

 $\delta_{N\infty} = \delta_{N\infty}$ -factor $\cdot \tau$;

Table C19: Displacement factor under shear load¹⁾ (rebar)

Rebar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Uncracked concrete Ca	Uncracked concrete C20/25, static and quasi-static action												
All temperature ranges	_ mm_1	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03			
All temperature ranges	δν∞-factor	^L N/mm ²	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04		
Cracked concrete C20/	Cracked concrete C20/25, static and quasi-static action												
All temperature ranges	δ _{v0} -factor	[mm]	0,12	0,12	0,11	0,11	0,10	0,09	0,08	0,07	0,06		
All temperature ranges	δν∞-factor	^L N/mm ²	0,18	0,18	0,17	0,16	0,15	0,14	0,12	0,11	0,10		

¹⁾ Calculation of the displacement

 $\delta v_0 = \delta v_0$ -factor · V;

V: acting shear load

 $\delta_{V\infty} = \delta_{V\infty}$ -factor $\cdot V$;

Sikla Injection System VMU plus for concrete

Performance

Displacements (rebar)